

MJSR Series Three Lobes Roots Blower / Vacuum Pump

山东明天机械集团股份有限公司 Shandong Mingtian Machinery Group Joint Stock Co., Ltd Add:Industrial Park,North of Xianggong Town,Zhangqiu District,Jinan,Shandong,China Tel:+8613869163278 Mobile:+8613869163278 Email:vincent@cnrootsblower.com Website:www.cnrootsblower.com

山东明天机械集团股份有限公司 Shandong Mingtian Machinery Group Joint Stock Co., Ltd

品质源自专业诚信铸就明天 **Specialty Builds Quality Honesty Creates Future**


Company Introduction

Shandong Mingtian Machinery Group Joint Stock Co., Ltd is located Zhangqiu District, Jinan City, Shandong Province. It covers an area of more than 76000 m2, building surface is more than 39000m2, with more than 180 employees, among of them including 22 technicians, 5 technical engineers, and 3 domestic chief experts.

Founded in 2007, we are manufacturing and exporting roots blower and MVR compressors with 12 years experiences. With advanced CNC processing centers and test equipments, we are able to manufacture roots blowers, roots vacuum pumps and MVR compressors in 10 series and 220 models, with air capacity 0.6-1000 m3/min and pressure rise 9.8-198kPa.Our blowers are widely used in pneumatic conveying, waste water treatment, aquaculture, petroleum, chemical industry, metallurgy, electric power, cement, food, coal preparation, vacuum packaging and other industries.

Roots Blower Working Principle

The rotary-type positive-displacement roots blower incorporates two intermeshing rotors mounted on parallel shafts. In a twin-lobe roots blower, each rotor has two lobes (four per roots blower). In a tri-lobe roots blower, each rotor has three lobes (six per roots blower).

•The two rotors rotate in opposite directions.

•As each rotor passes the blower inlet, it traps a definite volume of gas (the 'displaced volume') and carries it around the case to the blower outlet. With constant speed operation, the displaced volume remains approximately the same at different inlet temperatures, inlet pressures and discharge pressures.

•As each rotor passes the blower outlet the gas is compressed to the system pressure there and expelled.

•Small but definite clearances allow operation without lubrication being required inside the air casing.

•Timing gears control the relative position of the rotors to each other.

Products Features

Shangu three lobes Roots Blower are new series Roots type blowers. With the help of CNC machine, we make precise rotors and casings to get a perfect gap to promote air performance, lower vibrations and noises results a significant improvement compared to traditional two lobe Roots Blower. Traditional Roots Blower lubricate bearings and gears with grease and oil. Shangu blowers with double oil tank need oil only. It is very convenient to maintain and oil has a better lubricating effect than grease. So it could be a longer bearings and gears life.

- Strict management of quality standards. ISO9001 and CE systems.
- Technical customization (size, pressure, design, pump accessories).
- CNC machinery enabling precise measurements and grinding needed for more efficient pumping.
- Fewer vibrations transmitted through the lobe, for longer-lasting shafts, gears and bearings.
- Three-lobe design controls any backflow pressure towards rotor.
- Oil and dust-free outlet.
- Lubricated with high grade oil, proven to be a much better alternative to grease.
- Significant improvement in air performance ratios: wider air, pressure and vacuum range.
- Much quieter: our new design can effectively reduce noise by approximately 5 dB.
- Lower energy consumption.
- All our products can be used for OEM.

Product Performance

- Pressure Rise:9.8-98kpa
- Air Capacity:2.35-59m³/min
- Motor Power: 1.5-160kw

Information to Submit When Order

Usage	Blowing use or vacuum use
	Gas variety, status, temperature
Gas Handled	With or without corrosiveness and explosiveness
	State the proportion of gas formation and the molecular
Pressure	Unit:kPa, kgf/cm2,mmH2O,mmHg,Pa, etc.
Pressure	Difference between gauge pressure and absolute pressure
	Unit: m3/min
Air Capacity	Differences among Reference Condition (N: 0oC, 1 sta
	(S: 20oC,1 standard atmosphere pressure), and inlet con
Location	Outdoor or indoor
Location	Surrounding temperature, with or without dangerous
Motor	Model No, output, poles
Driving Type	Coupling or v-belt
	Temperature of cooling water
Others	Operating time
Others	Whether in need of accessories or spare parts
	Painting colour

weight if handle mixed gas
2
ndard atmosphere pressure),Standard Condition
ndition

Performance Table Explain

- The performance tables give the model type, bore, r.p.m, discharge pressure, air capacity and required power of the blower.
- The air capacity in the tables is indicated in the standard suction state. The standard suction state herein mentioned is defined as the condition at 20 temperature, 1.0332kgf/cm2 [101.3kPa] absolute pressure and 65%relative humidity.
- The reference air capacity(temperature 0 °C and 1.0332kgf/cm2) [101.3kPa] absolute pressure is generally indicated in Nm³/min.
- However, it may be converted into the standard air capacity by the following equation if the suction pressure is equal.

Q_s=Q_Nx 1.0732

Where,

Q_s: standard air capacity;

Q_N: reference air capacity;

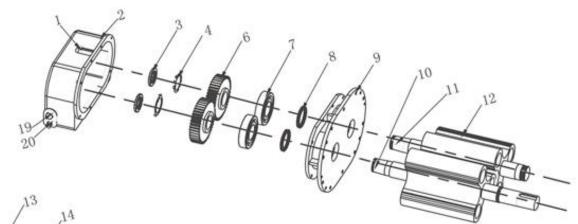
■ The discharge air capacity can be converted into the standard air capacity by the following equation.

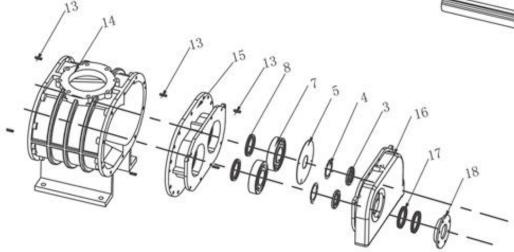
Qs = Qd x $\frac{1.0332 + Pd}{2a1.0332}$ x $\frac{273 + ts}{273 + td}$ Where,

Q_d:discharge air capacity,in(m3/min)

Pd:discharge pressure, in (kgf/cm2)

 t_s :suction temperature,in(°C)


 t_d :discharge temperature, in(°C)


According to the air capacity and discharge pressure as calculated above, the model number, bore, r.p.m and required power can be found in the performance table.

Pressure Conversion Table

	Ра	Bar	Kgf/cm ²	Atm	MmH ₂ 0	MmHg (Torr)
	1	1 x 10 ⁻⁵	1.01972 x 10 ⁻⁵	9.86923 x 10 ⁻⁶	1. 01972 x 10 ⁻¹	7. 50062 x 10 ⁻³
	1 x 10 ⁵	1	1.01972	9.86923 x 10 ⁻¹	1.01972 x10 ⁴	7. 50062 x 10 ²
Pressure	9. 80665 x 10 ⁴	9.80665 x 10 ⁻¹	1	9.67841 x 10 ⁻¹	1 x 10 ⁴	7. 35559 x 10 ²
	1.01325 x 10 ⁵	1.01325	1.03323	1	1. 03323 x 10 ⁴	7. 60000 x 10 ²
	9.80665	9. 80665 x 10 ⁻⁵	1 x 10 ⁻⁴	9.67841 x 10 ⁻⁵	1	7. 35559 x 10 ⁻²
	1.33322 x 10 ²	1. 33322 x 10 ⁻³	1.35951 x 10 ⁻³	1.31579 x 10 ⁻³	1. 35951 x 10 ¹	1

Roots Blower Structure

Parts Material Table

No.	Name	Material	QTY	No.	Name	Material	QTY
1	Lubrication Plug	A3	2	11	Driven Shaft	45#	1
2	Gear Case	HT250	1	12	Rotor	QT400	2
3	Lock Nut	A3	4	13	Positioning Pin	45#	6
4	Washer	A3	4	14	Casing	HT250	1
5	Oil Splash	A3	2	15	Drive Side Wall	HT250	1
6	Gear	20CrMnTi	2	16	Drop Tank	HT250	1
7	Bearing	SUJ2	4	17	Oil Seal	Nitrile Rubber	2
8	V-ring	Nitrile Rubber	4	18	Oil Tank Cap	HT250	1
9	Wall Plate	HT250	1	19	Oil Gauge	Organic Glass	2
10	Drive Shaft	45#	1	20	Purge Plug	A3	2

MJSR Series Roots Blower Performance Datasheet

													F	Per	for	ma	nc	еĽ)ata	asł	nee	t										
Model	Bore mm	RPM	ę	9.8KP/	۹.	1	9.6KP	A	2	9.4KP	A	3	9.2KP	A		49KPA		5	8.8KP	A	6	8.6KP	A	7	8.4KP	A	8	8.2KP	A		98KPA	
			Qs	La	Ро	Qs	La	Ро	Qs	La	Ро	Qs	La	Ро	Qs	La	Ро	Qs	La	Ро	Qs	La	Ро	Qs	La	Ро	Qs	La	Ро	Qs	La	Ро
		1230	3.66	1.05	1.5	3.15	1.56	2.2	3.29	2.49	3	3.15	3.11	4	3.03	3.98	5.5	2.92	4.66	5.5	2.82	5.43	7.5	2.73	6.21	7.5	2.54	6.98	7.5	2.35	7.76	11
		1300	3.80	1.12	1.5	3.59	1.64	2.2	3.43	2.46	3	3.29	3.28	4	3.17	4.10	5.5	3.06	4.92	5.5	2.96	5.74	7.5	2.87	6.56	7.5	2.78	7.58	11	2.61	8.20	11
		1360	3.91	1.11	1.5	3.70	1.72	2.2	3.54	2.58	3	3.40	3.43	4	3.28	4.29	5.5	3.17	5.15	5.5	3.07	6.01	7.5	2.98	6.86	7.5	2.89	7.72	11	2.70	8.58	11
		1460	4.26	1.19	1.5	4.05	2.17	3	3.88	3.10	4	3.75	3.99	5.5	3.63	4.61	5.5	3.52	5.53	7.5	3.32	6.45	7.5	3.23	7.47	11	3.04	8.29	11	2.81	9.21	11
		1560	4.70	1.10	1.5	4.49	2.21	3	4.33	2.96	4	4.12	3.94	5.5	3.97	4.92	5.5	3.77	5.91	7.5	3.57	6.89	7.5	3.42	7.87	11	3.23	8.86	11	3.03	9.84	11
MJSR 80	80A	1650	4.60	1.56	2.2	4.48	2.29	3	4.34	3.13	4	4.24	4.17	5.5	4.15	5.51	7.5	4.03	6.25	7.5	3.68	7.59	11	3.55	8.33	11	3.40	9.37	11	3.09	10.50	15
		1730	5.11	1.30	2.2	4.82	2.39	3	4.68	3.28	4	4.55	4.37	5.5	4.40	5.46	7.5	4.26	6.55	7.5	4.16	7.64	11	4.06	8.73	11	3.98	9.82	11	3.65	11.91	15
		1820	5.51	1.58	2.2	5.30	2.95	4	5.13	3.98	5.5	5.00	4.59	5.5	4.88	5.74	7.5	4.77	6.89	7.5	4.47	8.04	11	4.28	9.18	11	4.09	10.83	15	3.92	11.48	15
		1900	5.59	1.54	2.2	5.37	3.08	4	5.21	4.05	5.5	5.08	4.80	5.5	4.96	5.99	7.5	4.85	7.59	11	4.75	8.39	11	4.65	9.59	11	4.53	10.98	15	4.38	11.98	15
		2100	6.28	2.25	3	6.07	3.41	4	5.91	4.48	5.5	5.77	5.52	7.5	5.65	7.51	11	5.54	7.95	11	5.44	9.27	11	5.35	10.95	15	5.26	12.92	15	5.18	13.24	15
		2300	6.43	2.47	3	6.26	3.50	5.5	6.10	4.85	5.5	5.97	5.80	7.5	5.85	7.25	11	5.74	8.70	11	5.64	10.15	11	5.54	11.60	15	5.46	13.92	18.5	5.37	15.36	18.5
		1140	5.02	1.78	2.2	4.74	2.26	3	4.51	3.39	4	4.33	4.52	5.5	4.16	5.65	7.5	4.02	6.78	7.5	3.88	7.91	11	3.75	9.04	11						
		1220	5.46	1.83	2.2	5.17	2.42	3	4.95	4.13	5.5	4.76	4.84	5.5	4.60	6.05	7.5	4.45	7.46	11	4.32	8.46	11	4.19	9.67	11						
		1310	5.85	1.46	2.2	5.56	2.92	4	5.34	3.90	5.5	5.16	5.46	7.5	4.99	6.49	7.5	4.84	7.79	11	4.71	9.09	11	4.52	10.39	15						
		1460	6.67	2.03	3	6.38	3.25	4	6.16	4.34	5.5	5.97	5.79	7.5	5.81	7.24	11	5.66	8.68	11	5.53	10.13	15	5.40	11.58	15						
		1540	7.11	2.12	3	6.82	4.04	5.5	6.60	4.58	5.5	6.41	6.11	7.5	6.25	7.63	11	6.10	9.16	11	5.96	10.68	15	5.84	12.21	15						
MJSR 100	100A	1680	7.77	2.28	3	7.48	3.95	5.5	7.26	5.62	7.5	7.08	6.66	7.5	6.91	8.33	11	6.76	10.50	15	6.63	11.65	15	6.50	13.32	15						
		1780	8.22	3.19	4	7.93	4.53	5.5	7.71	5.99	7.5	7.52	7.46	11	7.36	8.82	11	7.21	10.58	15	7.07	12.35	15	6.95	15.11	18.5						
		1880	8.76	3.10	4	8.47	4.73	5.5	8.25	5.59	7.5	8.07	7.75	11	7.90	9.32	11	7.76	11.18	15	7.62	13.04	15	7.49	14.90	18.5						
		1980	9.31	3.29	4	9.02	5.40	7.5	8.80	6.19	7.5	8.61	7.85	11	8.45	10.39 10.41	15	8.30	11.77	15	8.16	13.73	15	8.04	15.70	18.5						
		2100		4.41	5.5	9.48	5.76	7.5		7.49	11	9.07	8.33				15		12.49		8.62	14.57	18.5	1.000	16.65							
		2200 980	10.31	4.51 3.07	5.5 4	10.06 6.23	5.60	7.5 5.5	9.85 5.93	8.41	11 5.5	9.71 5.68	8.72 5.48	11 7.5	9.55 5.46	11.54 6.85	15 7.5	9.40 5.26	13.08 8.22	15	9.27 5.08	15.26 9.59	18.5	9.14 4.91	17.44 10.96	18.5 15					$\left \right $	
		1200	6.61 8.30	3.12	4	7.92	4.17 4.31	5.5	7.62	4.71 5.66	7.5	7.38	6.71	7.5	7.16	8.39	11	6.96	10.06	11	6.78	9.59	11 15	6.61	13.42	15	6.45	15.09	18.5	6.30	16.77	18.5
		1310	9.15	3.05	4	8.77	4.71	5.5	8.47	5.79	7.5	8.22	7.32	11	8.00	9.16	11	7.80	10.99	15	7.62	12.82	15	7.45	14.65		7.29	16.48		7.14	18.45	22
		1390	9.15	3.12	4	9.38	3.89	5.5	9.09	5.83	7.5	8.81	7.77	11	8.62	9.16	11	8.42	11.66	15	8.24	12.82	18.5	8.07	15.54	18.5		17.88	1	7.14		22
		1450	10.03		4	9.64	4.56	5.5	9.35	6.08	7.5	9.10	8.11	11	8.89	10.53	15	8.68	12.16	15	8.50	14.40	18.5	8.33	16.21		8.17	18.24	22	8.02		22
MJSR 125	125A	1530	10.54	2.96	4	10.16		7.5	9.86	7.52	11	9.62	8.56	11	9.40	10.69	15	9.20	12.83	15	9.02	14.97	18.5	8.85	17.49	22	8.69	19.24	22		21.38	30
		1630	11.21	2.93	4	10.83	6.13		10.53		11	10.29	9.11	11	10.07		15	9.87	14.67		9.69	15.95	18.5	9.52	18.22	22	9.36	21.45		9.21		30
		1750	11.94	4.15	5.5	11.55	6.28		11.26		11	11.01	10.36	15	10.79		15		14.68				22	10.24	1	22		22.01	30		24.46	30
		1850	12.61		5.5	12.22	7.46	11	11.93		11	11.68		15	11.16				15.51		11.08		22		20.68	30	10.75		30		25.85	30
		2000	13.66	6.03	7.5	13.28	8.03	11		10.45	15	12.73	11.18	15		15.98	18.5		17.77	22	12.13		30	11.96		30		25.15			31.59	37

Qs: Inlet Airflow (m³/min.) La: Blower Shaft Power(Kw) Po: Motor Power(Kw)

[®]山 戱[®]

shan gu

MJSR Series Roots Blower Performance Datasheet

Qs: Inlet Airflow (m³/min.) La: Blower Shaft Power(Kw) Po: Motor Power(Kw)

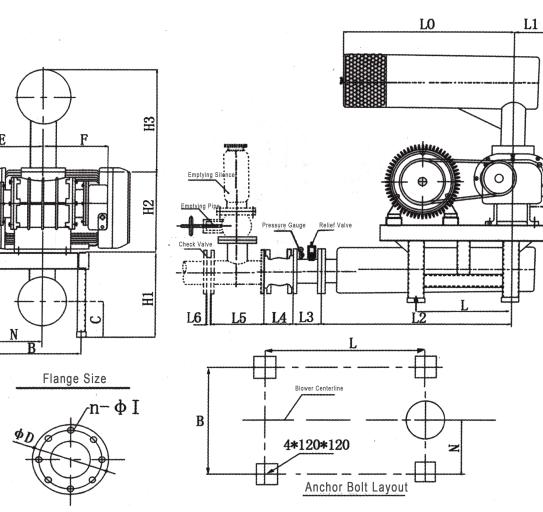
													F	Per	for	ma	nc	e C)ata	asł	nee	t			
Model	Bore mm	RPM	9	9.8KP/	A	1	9.6KP	A	2	9.4KP	A	3	9.2KP	A	6	49KPA	N	5	8.8KP	A	6	8.6KP	A	7	'8.4KP
			Qs	La	Ро	Qs	La	Ро	Qs	La	Ро	Qs	La	Ро	Qs	La	Ро	Qs	La	Ро	Qs	La	Ро	Qs	La
		970	15.05	4.27	5.5	14.38	7.92	11	14.06	10.57	15	13.72	13.06	15	13.55	16.32	18.5	13.39	19.58	22	13.13	22.85	30	12.97	26.11
		1100	17.34	5.80	7.5	17.10	7.47	11	16.75	11.21	15	16.32	14.94	18.5	15.96	18.68	22	15.79	22.41	30	15.57	26.14	30	15.37	29.88
		1180	18.66	5.51	7.5	18.32	10.21	15	17.99	11.91	15	17.70	16.82	22	17.46	21.02	30	17.23	23.82	30	17.02	27.79	30	16.82	31.76
		1240	19.55	5.61	7.5	19.37	11.02	15	19.03	14.08	18.5	18.83	17.66	22	18.65	21.86	30	18.43	25.03	30	18.11	29.21	37	17.93	33.38
MJSR 150	150A	1400	22.32	7.70	11	22.05	13.05	15	21.82	18. 17	22	21.60	21.20	30	21.43	23.55	30	21.07	28.46	37	20.93	35.07	45	20.73	37.68
		1470	24.23	7.42	11	24.08	14.84	18.5	23.82	19.08	22	23.61	22.95	30	23.44	24.73	30	23.09	29.68	37	22.01	35.62	45	21.88	39.57
		1620	26.31	11.81	15	25.55	17.35	22	25.23	21.03	30	25.03	23.09	30	24.88	32.86	37	24.53	35.63	45	24.35	44.92	55	24.13	48.60
		1730	27.81	14.58	18.5	27.16	19.47	22	26.88	22.45	30	26.62	30.19	37	26.42	32.82	37	26.21	37.93	45	26.04	45.14	55	25.72	51.39
		1900	30.19	11.51	15	29.75	23.01	30	29.55	28.76	37	29.23	34.53	37	29.15	40.84	45	28.84	45.61	55	28.55	49.75	55	28.29	54.14
	A 150A	970	19.05	5.25	7.5	17.9	8.16	11	17.01	12.24	15	16.31	16.32	18.5	15.6	22.4	30	14.9	24.48	30	14.42	29.56	37	14.01	34.91
		1150	23.1	6.21	7.5	21.98	11.61	15	20.95	14.51	18.5	20.34	20.35	22	19.62	24.18	30	18.91	29.02	37	18.33	33.86	37	17.86	40.96
MJSR 175A		1450	30.65	7.32	11	29.48	12.2	15	28.61	18.3	22	27.87	24.4	30	27.18	30.49	37	26.61	36.59	45	25.95	43.69	55	25.36	51.65
		1750	37.32	7.56	11	36.05	16.72	18.5	35.15	22.08	30	34.45	29.44	37	33.75	36.8	45	33.04	44.16	55	32.61	53.52	75		
		2000	42.78	11.09	15	41.67	18.83	22	40.78	25.24	30	39.95	33.65	37	39.26	42.06	45	38.68	50.47	55					
		970	32.1	8.3	11	31.0	16.5	18.5	30.1	23.2	30	29.1	25.7	30	28.2	32.2	37	27.8	38.6	45	27.2	45.0	55	26.6	53.4
		1170	39.9	10.6	15	38.7	18.6	22	37.7	27.9	37	36.8	35.8		36.0	38.8	45	35.4	46.5	55	34.7	54.3	75	34.4	62.0
MJSR 200H	200A	1250	42.8	11.5	15	41.7	18.6	22	40.7	29.0	37	39.7	40.1	45	38.9	44.4	55	38.4	54.7	75	36.7	57.0	75	36.1	60.3
		1350	46.5	11.1	15	45.3	23.1	30	44.4	30.8	37	43.7	41.8	45	42.7	44.7	55	42.2	53.7	75	41.6	62.6	75	41.1	74.6
		1450	50.2	10.8	15	49.0	24.7	30	48.1	32.4	37	47.4	38.4	45	46.7	48.1	55	46.1	57.7	75	45.5	67.3	75	45.0	76.9
		970	39.1	10.6	15	38.4	18.4	22	37.7	24.7	30	37.1	32.9	37	36.5	44.1	55	35.7	49.3	55	35.0	57.6	75	34.3	65.8
		1150	46.8	14.7	18.5	45.9	21.7	30	45.4	29.0	37	45.0	38.6	45	44.1	48.2	55	43.5	57.9	75	43.1	67.5	75	42.6	77.2
MJSR 200	200A	1230	50.7	18.3	22	49.1	25.6	30	48.6	35.8	45	48.1	44.3	55	47.4	54.6	75	46.8	61.9	75	46.6	74.2	90	46.2	82.6
		1390	55.5	18.3	22	55.2	28.2	37	54.9	41.0	45	54.5	54.5	75	54.0	68.3	75	53.6	74.0	90	53.1	81.6	90	52.9	93.3
		1480	59.3	19.0	22	58.8	28.9	37	58.4	44.9	55	58.1	55.9	75	57.7	64.1	75	57.5	74.5	90	57.1	86.9	110	56.9	99.3

4KPA 88.2KPA **98KPA** Ро Qs Po Qs Po La La La 6.11 30 12.81 29.37 37 12.63 32.64 37 33.61 14.93 37.35 45 29.88 37 15.19 37 1.76 37 16.50 35.73 16.25 39.70 45 45 33.38 37 17.62 37.55 17.34 43.72 55 45 55 7.68 45 20.48 43.39 55 20.12 47.10 39.57 45 21.65 44.51 55 21.38 49.46 55 23.86 53.19 23.63 55.12 75 8.60 55 75 1.39 75 25.55 55.47 75 25.31 61.21 75 27.86 63.92 1.14 75 28.05 57.53 75 75 13.88 39.27 34.91 45 45 55 10.96 45 17.19 46.08 51.65 75 24.85 58.11 75 75 26.3 57.9 75 25.7 64.3 75 53.4 62.0 75 33.8 69.8 90 33.5 77.5 90 60.3 75 35.7 75.6 90 35.4 86.8 110 4.6 90 40.6 80.5 90 40.3 89.5 110 76.9 90 44.6 89.5 110 44.1 96.1 110 65.8 75 33.7 77.0 90 33.0 82.2 90 77.2 90 42.1 86.8 110 41.0 96.5 110 82.6 90 45.7 92.9 110 44.8 103.2 110 93.3 110 52.5 105.0 110 52.0 116.6 132

山 戱[®] shan gu

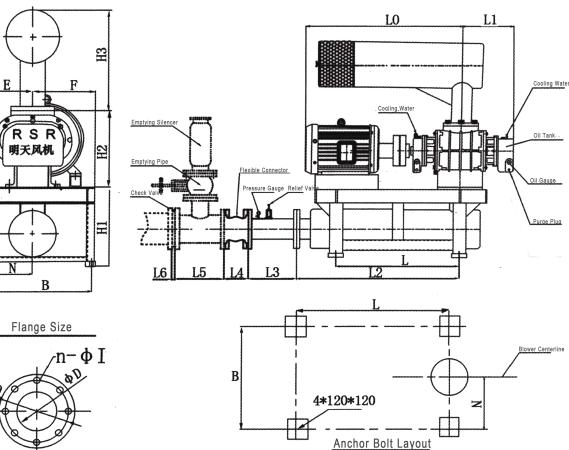
110

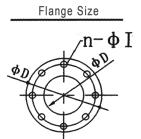
56.5 111.7

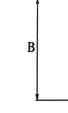

132

56.0 126.2

160

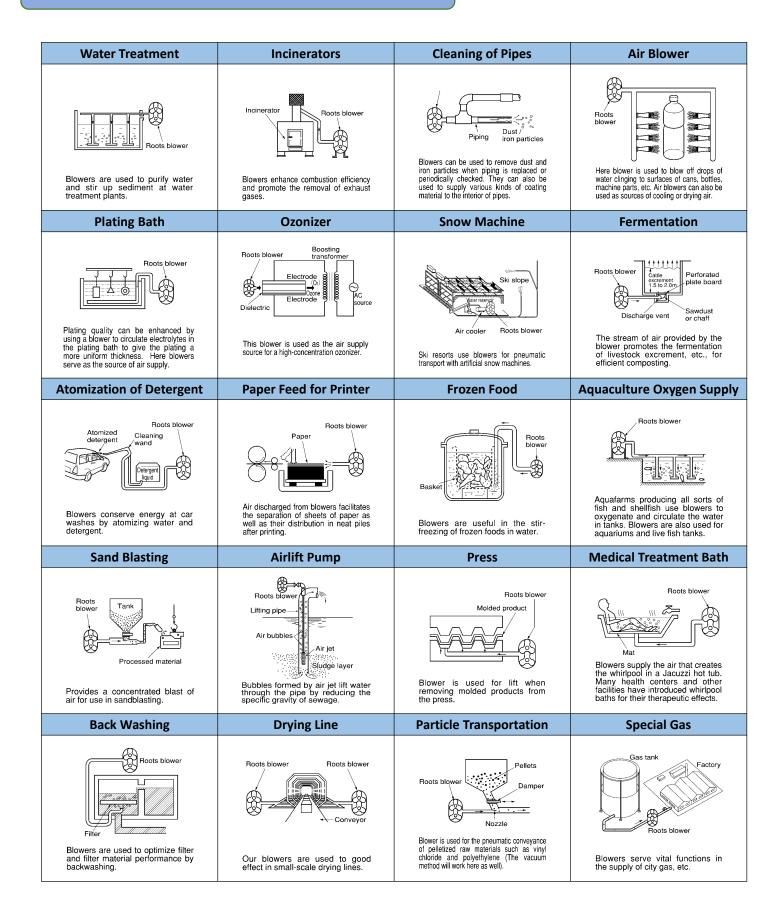

品质源自专业诚信铸就明天 **Specialty Builds Quality Honesty Creates Future**


MJSR Series Belt Drive Drawings

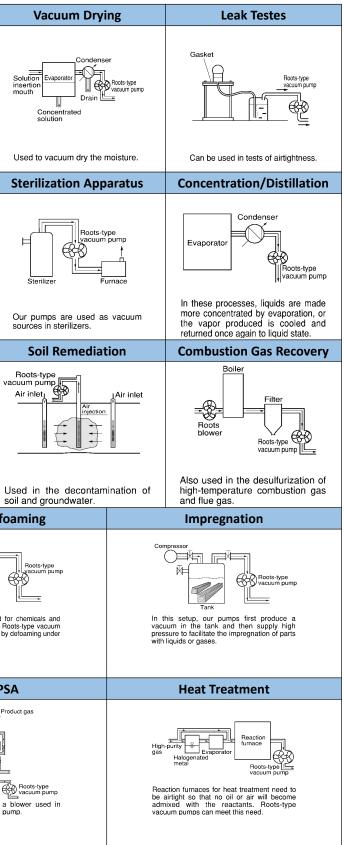


Model	L	в	L0	LI	L2	L3	L4	L5	L6	Nd	Ns	с	Ed	Es	F	н	H2	НЗ	D	nФl
MJSR80	500	360	700	175	800	150	135	320	19	165	220	150	245	300	240	375	305	420	160	8-18
MJSR100	520	470	750	175	1050	150	150	320	19	205	260	160	285	340	280	400	305	450	180	8-18
MJSR125	590	500	775	200	1100	150	165	320	21	200	260	185	290	356	290	450	370	453	210	8-18
MJSR150A	600	590	1050	240	1200	180	180	400	24	215	295	210	335	400	320	500	470	600	240	8-22
MJSR150	600	590	1050	240	1200	180	180	400	24	270	335	210	390	450	375	500	440	600	240	8-22
MJSR200H	760	755	1320	330	1700	225	190	400	29	325	400	250	485	555	465	580	570	730	295	8-22
MJSR200	760	755	1320	330	1700	225	190	400	29	380	460	250	536	605	515	580	570	730	295	8-22

MJSR Series Coupling Drive Drawings



Mode1	L	В	LO	L1	L2	L3	L4	L5	L6	N	С	E	F	H1	H2	H3	D	nФl
MJSR80	500	450	780	240	800	150	135	320	19	190	150	190	260	375	305	420	160	8-18
MJSR100	600	450	820	280	1050	150	150	320	19	190	160	190	260	400	305	450	180	8-18
MJSR125	640	540	1000	290	1100	150	165	320	21	220	185	220	320	450	370	453	210	8-18
MJSR150A	860	650	1000	320	1200	180	180	400	24	265	210	265	320	500	470	600	240	8-22
MJSR150	860	650	1200	375	1200	180	180	400	24	265	210	265	385	500	470	600	240	8-22
MJSR200H	1240	755	1560	465	1700	225	190	400	29	320	250	320	530	580	570	730	295	8-22
MJSR200	1240	755	1700	515	1700	225	190	400	29	320	250	320	435	580	570	730	295	8-22


Roots Blower Applications

Roots Blower Applications

Vacuum conditions are useful in the season of docs.Virtual functions of the season of docs.Virtual functions of the season of docs.Virtual functions of the season of	Food Processing	Va	cuum Drying	
Vacuum conditions are useful in the seasoning of foods. that can collect solvent drainage is ideal (used with drainage pot). u Vacuum Packing of Food Freeze Drying S Vacuum Packing keeps foods such as meet and vegatables fresh. u u u Vacuum packing keeps foods such as meet and vegatables fresh. Freshness and quality of vegetables and other foods can also be preserved by freezing the foods in tanks under vacuum conditions. C Adsorption Conveyance Particle Transport vacuum steel plates and easily breakable materials such as glass. Energy surings are promoted by the elimination of gripping perations. Used in the conveyance of rice, wheat, soybeans, resin pellets, etc. Vacuum Defoa Vacuum Molding Vacuum Defoa u u u u Vacuum backs by the attached. Experiments Vacuum Defoa u Vacuum Molding Vacuum Defoa u u u Vacuum backs by evacuum pumps attached. Experiments VPSA/PS2 Used in the conveyance of rice, with resins, etc. (trap attached). u u u Experiments VPSA/PS2 u u u Upper everyone at the upper other preserve at attached. u u u	Chicken pieces		tank Condenser	S i r
Adsorption Conveyance meatings upper former form		that can d	collect solvent drainage is	'
Image: Construction pump PackImage: Constru	Vacuum Packing of Food	Fr	reeze Drying	5
meat and vegetables fresh. tanks under vacuum conditions. s Adsorption Conveyance Particle Transport Image: Conveyance of processing and particle of the conveyance of processing and particle of the conveyance o	Pack	Freshnes and oth	s and quality of vegetables er foods can also be	
Adsorption conveyance by vacuum pump is well suited to heavy materials such as steel plates and easily breakable materials such as glass. Energy savings are promoted by the elimination of gripping operations. Used in the conveyance of rice, wheat, soybeans, resin pellets, etc. Used used in the conveyance of rice, wheat, soybeans, resin pellets, etc. Used used used used used in the conveyance of rice, wheat, soybeans, resin pellets, etc. Used used used used used used used used u	meat and vegetables fresh.	tanks und	ler vacuum conditions.	5
Vacuum Molding Vacuum Defoa Image: Construction of the state of the	Adsorption conveyance by vacuum pump is well suited to heavy materials such as steel plates and easily breakable materials such as glass. Energy savings are promoted by the elimination of gripping	Secondary	He conveyance of rice,	Us
Image: Construction of the second		-	Vacuum D	Pefoa
Dry vacuum pumps can be used to create a " space environment" on Earth by producing a	Roots-type vacuum pumps are used vacuum sources for vacuum molders u	n pump I as	Air bubbles version of the second sec	oved for
Dry vacuum pumps can be used to create a " space environment" on Earth by producing a	Experiments		VPSA	/PSA
1	Space chamber Dry vacuum pumps can be used to creat space environment" on Earth by produci	e a "	blower	ws a b

n gu

Company&Workshop

Hanchuan Lathe

Workshop

Workshop

-13-

Agma CNC Center

Ready Delivery Roots Blower

Workshop

Workshop

MJSR Series Roots Blower

